Add like
Add dislike
Add to saved papers

Systematic Characterization of the Metabolism of Acetoin and Its Derivative Ligustrazine in Bacillus subtilis under Micro-Oxygen Conditions.

Bacillus subtilis is an important microorganism for brewing of Chinese Baijiu, which contributes to the formation of flavor chemicals including acetoin and its derivative ligustrazine. The first stage of Baijiu brewing process is under micro-oxygen conditions; however, there are few studies about B. subtilis metabolism under these conditions. Effects of various factors on acetoin and ligustrazine metabolism were investigated under these conditions, including key genes and fermentation conditions. Mutation of bdhA (encoding acetoin reductase) or overexpression of glcU (encoding glucose uptake protein) increased acetoin concentration. Addition of Vigna angularis powder to the culture medium also promoted acetoin production. Optimal culture conditions for ligustrazine synthesis were pH 6.0 and 42 °C. Ammonium phosphate was shown to promote ligustrazine synthesis in situ. This is the first report of acetoin and ligustrazine metabolism in B. subtilis under micro-oxygen conditions, which will ultimately promote the application of B. subtilis for maintaining Baijiu quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app