Add like
Add dislike
Add to saved papers

Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquid-Metal Particles.

Stretchable conductors are vital and indispensable components in soft electronic systems. The development for stretchable conductors has been highly motivated with different approaches established to address the dilemma in the conductivity and stretchability trade-offs to some extent. Here, a new strategy to achieve superelastic conductors with high conductivity and stable electrical performance under stretching is reported. It is demonstrated that by electrically anchoring conductive fillers with eutectic gallium indium particles (EGaInPs), significant improvement in stretchability and durability can be achieved in stretchable conductors. Different from the strategy of modulating the chemical interactions between the conductive fillers and host polymers, the EGaInPs provide dynamic and robust electrical anchors between the conductive fillers. A superelastic conductor which can achieve a high stretchability with 1000% strain at initial conductivity of 8331 S cm-1 and excellent cycling durability with about eight times resistance change (compared to the initial resistance at 0% strain before stretching) after reversibly stretching to 800% strain for 10 000 times is demonstrated. Applications of the superelastic conductor in an interactive soft touch device and a stretchable light-emitting system are also demonstrated, featuring its promising applications in soft robotics or soft and interactive human-machine interfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app