Add like
Add dislike
Add to saved papers

MicroRNA-146b-3p regulates the development and progression of cerebral infarction with diabetes through RAF1/P38MAPK/COX-2 signaling pathway.

Diabetes has been considered as an independent risk factor for cerebral infarction. However, the pathological mechanism of cerebral infarction with diabetes (DMCI) is still rarely known. In this study, we try to explore the relationship between microRNA-146b-3p (miR-146b-3p) and DMCI patients. The peripheral blood mononuclear cells were separated after the patients were selected from our hospital. Firstly, the content of IL-6 and COX-2 was detected by ELISA. Then, the total RNAs were extracted and analyzed by microRNA (miRNA) microarray. Moreover, the target genes of miR-146b-3p were predicted by online miRNA target prediction algorithms. Meanwhile, luciferase reporter system was used for assaying the target gene for miRNA-146b-3p. Simultaneously, RT-PCR assay was used for the miRNA expression detection. Furthermore, western blot was applied to determine the expression of the signal pathway involved proteins. Our results demonstrated that expression of IL-6 and COX-2 were remarkably up-regulated in peripheral blood of DMCI patients compared with that in normal control group. In addition, miRNA microarray data suggested that miR-146b-3p expression was significantly down-regulated in DMCI patients, with v-raf-1 expression negatively regulated. Moreover, miR-146b-3p regulated RAF1 expression was found to mediate P38MAPK signaling activation in thrombosis patients. The following research indicated that activation of RAF1 trough miR-146b-3p down-regulation contributed to activation of RAF/P38MAPK/COX-2 signaling pathway in vascular infarction. Our data have implied that altered expression of miR-146b-3p is closely related to the progression and development of DCMI mediating the RAF/P38MAPK/COX-2 signal transduction pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app