Add like
Add dislike
Add to saved papers

In Vitro and In Vivo Anti-Osteoarthritis Effects of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-Glucoside from Polygonum Multiflorum.

Polygonum multiflorum Thunb. is a traditional herbal medicine that is rich in polyphenols. The major compound, 2,3,5,4'-tetrahydroxystilbene-2- O -β-d-glucoside (THSG) has many pharmacological activities, such as antioxidative and free radical-scavenging properties, and the abilities to reduce hyperlipidemia, prevent lipid peroxidation, and protect the cardiovascular system. In this study, the anti-osteoarthritis (OA) effects of THSG were explored using in vitro and in vivo models. THSG inhibited nitric oxide (NO) and prostaglandin E₂ (PGE₂) production and inducible NO synthase (iNOS) and cyclooxygenase-2 expressions by lipopolysaccharide-stimulated RAW 264.7 cells. On the other hand, THSG inhibited PGE₂ production and iNOS and matrix metalloproteinase-13 expressions by interleukin-1β-stimulated primary rat chondrocytes. Through a mono-iodoacetate-induced rat OA model assay, THSG reduced paw edema and improved the weight-bearing distribution. Therefore, THSG has anti-inflammatory activity and could be applied as a lead compound for the development as an OA drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app