Add like
Add dislike
Add to saved papers

Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemia-reperfusion.

Brain Research 2018 May 16
Molecular mechanism underlying ischemic stroke remains poorly understood. We previously reported glucose 6-phosphate dehydrogenase (G6PD) activity in pentose phosphate pathway (PPP) is activated via heat shock protein 27 (HSP27) phosphorylation at serine 85 (S85) by ataxia telangiectasia mutated (ATM) kinase during cerebral ischemia. This mechanism seems to be endogenous antioxidative system. To determine whether this system also works during reperfusion, we performed comparative metabolic analysis of reperfusion effect on metabolism in rat cortex using middle cerebral artery occlusion (MCAO). Metabolic profiling using gas-chromatography/mass-spectrometry analysis showed changes in metabolic state that depended on reperfusion time. Enrichment analysis showed PPP was significantly upregulated during ischemia-reperfusion. Significant increases in fructose 6-phosphate and ribulose 5-phosphate after reperfusion also suggested enhancement of PPP. In relation to PPP, ischemia-reperfusion induced an increase of up to 69-fold in HSP27 transcripts after 24-h reperfusion. Immunoblotting showed gradual increase in HSP27 protein and marked increase in HSP27 phosphorylation (S85) that were time-dependent (4.5-fold after 24-h reperfusion). G6PD activity was significantly elevated after 1-h MCAO (20%), reduced after 1-h reperfusion, increased gradually thereafter and significantly elevated after 24-h reperfusion. The NADPH/NAD+ ratio displayed similar increasing pattern. Intracerebroventricular injection of ATM kinase inhibitor (KU-55933) significantly reduced HSP27 phosphorylation and G6PD activity, significantly increased protein carbonyl, and resulted in increase in infarct size (100%) 24-h after reperfusion following 90-min MCAO. Consequently, G6PD activation via HSP27 phosphorylation by ATM kinase may be part of endogenous antioxidant defense neuroprotection mechanism that is activated during ischemia-reperfusion. These findings have important implications for treatment of stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app