Add like
Add dislike
Add to saved papers

Computational Signaling Protein Dynamics and Geometric Mass Relations in Biomolecular Diffusion.

We present an atomistic level computational investigation of the dynamics of a signaling protein, monocyte chemoattractant protein-1 (MCP-1), that explores how simulation geometry and solution ionic strength affect the calculated diffusion coefficient. Using a simple extension of noncubic finite size diffusion correction expressions, it is possible to calculate experimentally comparable diffusion coefficients that are fully consistent with those determined from cubic box simulations. Additionally, increasing the concentration of salt in the solvent environment leads to changes in protein dynamics that are not explainable through changes in solvent viscosity alone. This work in accurate computational determination of protein diffusion coefficients led us to investigate molecular-weight-based predictors for biomolecular diffusion. By introducing protein volume- and protein surface-area-based extensions of traditional statistical relations connecting particle molecular weight to diffusion, we find that protein solvent-excluded surface area rather than volume works as a better geometric property for estimating biomolecule Stokes radii. This work highlights the considerations necessary for accurate computational determination of biomolecule diffusivity and presents insight into molecular weight relations for diffusion that could lead to new routes for estimating protein diffusion beyond the traditional approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app