Add like
Add dislike
Add to saved papers

Direct bioconversion of rice residue from canteen waste into lipids by new amylolytic oleaginous yeast Sporidiobolus pararoseus KX709872.

The new amylolytic oleaginous red yeast, Sporidiobolus pararoseus KX709872, produced both α-amylase (540 ± 0.09 mU/mL) and amyloglucosidase (23 ± 0.00 mU/mL) and showed good ability to directly convert rice residue from canteen waste to biomass and lipids. Effects of medium composition and cultivation conditions on growth and lipid accumulation for strain KX709872 were investigated under shaking flask and upscaling levels. At C : N ratio of 25 : 1, pH 5.45, 22.36°C, and 199.40 rpm for 7 days, volumetric production of biomass and lipids, lipid content, and lipid productivity reached 17.69 ± 0.44, 8.35 ± 0.19 g/L, 49.48 ± 0.41% (w/w), and 1.67 ± 0.11 g/L/day, respectively. Production of lipids was also implemented in 5.0-L stirred tank bioreactor with 2.5 L of optimized medium at 300 rpm and 3.0 vvm for 5 days. Volumetric production of biomass and lipids, lipid content, and lipid productivity were 16.33 ± 0.49, 8.75 ± 0.13 g/L, 56.61 ± 0.04% (w/w), and 2.19 ± 0.03 g/L/day, respectively. Meanwhile, the fatty acids of lipids from strain KX709872 had high oleic acid content (60-62%) which was similar to those of vegetable oils, indicating that these lipids are promising as an alternative biodiesel feedstock. Moreover, the biodiesel derived from lipids of strain KX709872 had properties satisfying the criteria of ASTM D6751 and EN 14214 standards.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app