Add like
Add dislike
Add to saved papers

A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water.

Carbohydrate recognition in water by biomimetic receptors is an attractive, but very challenging goal. Despite advances achieved in glucose recognition, little or no success has been obtained in the recognition of other saccharidic epitopes of paramount importance in biological processes. Herein, the unprecedented recognition of fucose in water by an artificial receptor that shows affinities closely comparable to those of several lectins is reported. The receptor has been constructed by assembling a hydrogen-bonding element (carbazole), a hydrophobic aromatic moiety (anthracene), and a water-solubilising function (phosphonate) into a macrocyclic structure to provide the appropriate binding geometry. The described receptor binds fucose with sub-millimolar affinity in water at physiological pH; this shows that enthalpic binding can be ascribed to hydrogen bonding to saccharidic hydroxy groups and to CH-π interactions between the sugar backbone and aromatic moieties. Experimental NOE contacts coupled to conformational search calculations return a picture of a binding site in which fucose assumes a staggered orientation reminiscent of that shown by fucose when bound to the Ralstonia solanacearum lectin (RSL).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app