Add like
Add dislike
Add to saved papers

Rapid and high-capacity adsorption of PFOS and PFOA by regenerable ammoniated magnetic particle.

Adsorption is well accepted as an effective method for perfluorinated compounds' (PFCs) removal from water among various conventional methods. However, development of adsorbents that combine good performance of PFC removal and regenerability has not yet been realized. This work demonstrated the fabrication and application of an ammoniated magnetic adsorbent for efficient and economical PFOS and PFOA removal. Functional ammonium groups and γ-Fe2 O3 were effectively incorporated in the particle with the proposed method. These fabricated magnetic particles presented superior adsorption performance for PFOS and PFOA with short equilibrium time of 120 min and high adsorption capacity. The isotherms revealed that the adsorption process belonged to multilayer sorption with their intricate interactions including anion exchange and hydrophobic interaction. The magnetic particle maintained its removal efficacy over a wide pH range of 3-9 or with coexisting substances. Moreover, the regeneration and reuse of the magnetic particle were successfully carried out with PFOS and PFOA removal efficiency sustained higher than 80% in 15 consecutive treatment cycles. Along with the efficient adsorption and easy separation of adsorbents, we expect that this ammoniated magnetic particle can serve as an excellent alternative for PFOS and PFOA removal from water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app