Add like
Add dislike
Add to saved papers

Decellularized amnion scaffold with activated PRP: a new paradigm dressing material for burn wound healing.

Direct application of amnion has greater risk of immunological rejection and infection. Decellularization is an effective method to lower the risk of immune complications and infections. The bioreactor assembly with multiple cassettes was designed for decellurization of multiple amnions with different cell types simultaneously in single run. A detergent-based protocol was modified to remove all cellular components from amnion and diminish the DNA content to render it non-immunogenic. Amnion (n = 10) were treated with 2% sodium dodecyl sulphate (SDS), 5% dimethyl sulfoxide (DMSO) and 2% sodium deoxycholeate (SD). Decellularized amnion samples were analyzed by haematoxylin-eosin staining (HE), Alcian blue pH 1 (AB-pH-1), 4,6-diamnionidino-2-phenylindol (DAPI), Massion's trichrome stain, DNA quantification, mechanical testing and scanning electron microscopy (SEM). Histological analysis showed complete removal of cellular components and the histoarchitecture of scaffold remained intact. Amnion scaffold activated with platelet rich plasma (PRP) and calcium chloride composition supported better adherence to the wound than amnion alone. Only single application showed good healing. In vivo assessment of activated amnion revealed stable dressing. It has good promising outcome. At day 7, histologically the wounds treated with activated amnion were almost closed without scarring and showed well differentiated epidermis, proliferation of keratinocytes, hair follicles and basement membrane as compared to controls and silver nitrate gel dressings in a mouse (Mus musculus). Cryopreservation had no adverse effect on the mechanical properties of the amnion scaffold. Cryopreservation of decellularized amnion by Dulbecco's modified eagle medium (DMEM) was expected to prepare off-the-shelf skin substitutes and preserve them to be immediately available upon request of patients' needs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app