Add like
Add dislike
Add to saved papers

Spectral analysis of localized rotating waves in parabolic systems.

In this paper, we study the spectra and Fredholm properties of Ornstein-Uhlenbeck operators [Formula: see text]where [Formula: see text] is the profile of a rotating wave satisfying [Formula: see text] as [Formula: see text], the map [Formula: see text] is smooth and the matrix [Formula: see text] has eigenvalues with positive real parts and commutes with the limit matrix [Formula: see text] The matrix [Formula: see text] is assumed to be skew-symmetric with eigenvalues (λ1 ,…,λ d )=(±i σ 1 ,…,±i σ k ,0,…,0). The spectra of these linearized operators are crucial for the nonlinear stability of rotating waves in reaction-diffusion systems. We prove under appropriate conditions that every [Formula: see text] satisfying the dispersion relation [Formula: see text]belongs to the essential spectrum [Formula: see text] in L p For values Re λ to the right of the spectral bound for [Formula: see text], we show that the operator [Formula: see text] is Fredholm of index 0, solve the identification problem for the adjoint operator [Formula: see text] and formulate the Fredholm alternative. Moreover, we show that the set [Formula: see text]belongs to the point spectrum [Formula: see text] in L p We determine the associated eigenfunctions and show that they decay exponentially in space. As an application, we analyse spinning soliton solutions which occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated eigenfunctions. Our results form the basis for investigating the nonlinear stability of rotating waves in higher space dimensions and truncations to bounded domains. This article is part of the themed issue 'Stability of nonlinear waves and patterns and related topics'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app