Add like
Add dislike
Add to saved papers

An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices.

In this work, we revisit a criterion, originally proposed in Friesecke & Pego (Friesecke & Pego 2004 Nonlinearity 17 , 207-227. (doi:10.1088/0951715/17/1/013)), for the stability of solitary travelling waves in Hamiltonian, infinite-dimensional lattice dynamical systems. We discuss the implications of this criterion from the point of view of stability theory, both at the level of the spectral analysis of the advance-delay differential equations in the co-travelling frame, as well as at that of the Floquet problem arising when considering the travelling wave as a periodic orbit modulo shift. We establish the correspondence of these perspectives for the pertinent eigenvalue and Floquet multiplier and provide explicit expressions for their dependence on the velocity of the travelling wave in the vicinity of the critical point. Numerical results are used to corroborate the relevant predictions in two different models, where the stability may change twice. Some extensions, generalizations and future directions of this investigation are also discussed.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app