Add like
Add dislike
Add to saved papers

Continuous manganese delivery via osmotic pumps for manganese-enhanced mouse MRI does not impair spatial learning but leads to skin ulceration.

NeuroImage 2018 June
Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique in rodent neuroimaging studies. Traditionally, Mn2+ is delivered to animals via a systemic injection; however, this can lead to toxic effects at high doses. Recent studies have shown that subcutaneously implanted mini-osmotic pumps can be used to continuously deliver manganese chloride (MnCl2 ), and that they produce satisfactory contrast while circumventing many of the toxic side effects. However, neither the time-course of signal enhancement nor the effect of continuous Mn2+ delivery on behaviour, particularly learning and memory, have been well-characterized. Here, we investigated the effect of MnCl2 dose and route of administration on a) spatial learning in the Morris Water Maze and b) tissue signal enhancement in the mouse brain. Even as early as 3 days after pump implantation, infusion of 25-50 mg/kg/day MnCl2 via osmotic pump produced signal enhancement as good as or better than that achieved 24 h after a single 50 mg/kg intraperitoneal injection. Neither route of delivery nor MnCl2 dose adversely affected spatial learning and memory on the water maze. However, especially at higher doses, mice receiving MnCl2 via osmotic pumps developed skin ulceration which limited the imaging window. With these findings, we provide recommendations for route and dose of MnCl2 to use for different study designs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app