Add like
Add dislike
Add to saved papers

The Oxygenic Photogranule Process for Aeration-Free Wastewater Treatment.

This study presents the oxygenic photogranule (OPG) process, a light-driven process for wastewater treatment, developed based on photogranulation of filamentous cyanobacteria, nonphototrophic bacteria, and microalgae. Unlike other biogranular processes requiring airlift or upflow-based mixing, the OPG process was operated in stirred-tank reactors without aeration. Reactors were seeded with hydrostatically grown photogranules and operated in a sequencing-batch mode for five months to treat wastewater. The new reactor biomass propagated with progression of photogranulation under periodic light/dark cycles. Due to effective biomass separation from water, the system was operated with short settling time (10 min) with effective decoupling of hydraulic and solids retention times (0.75 d vs 21-42 d). During quasi-steady state, the diameter of the OPGs ranged between 0.1 and 4.5 mm. The reactors produced effluents with average total chemical oxygen demand less than 30 mg/L. Nitrogen removal (28-71%) was achieved by bioassimilation and nitrification/denitrification pathways. Oxygen needed for the oxidation of organic matter and nitrification was produced by OPGs at a rate of 12.6 ± 2.4 mg O2 /g biomass-h. The OPG system presents a new biogranule process, which can potentially use simple mixing and natural light to treat wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app