Add like
Add dislike
Add to saved papers

Investigation on the Effect of Spatial Compounding on Photoacoustic Images of Carotid Plaques in the In Vivo Available Rotational Range.

Photoacoustic imaging (PAI) is a promising imaging modality due to its high optical specificity. However, the low signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of in vivo PA images are major challenges that prevent PAI from finding its place in clinics. This paper investigates the merit of spatial compounding of PA images in arterial phantoms and the achievable improvements of SNR, when in vivo conditions are mimicked. The analysis of the compounding technique was performed on a polyvinyl alcohol vessel phantom with black threads embedded in its wall. The in vivo conditions were mimicked by limiting the rotation range in ±30°, adding turbid surrounding medium, and filling the lumen with porcine blood. Finally, the performance of the technique was evaluated in ex vivo human carotid plaque samples. Results showed that spatial compounding elevates the SNR by 5-10 dB and CNR by 1-5 dB, depending on the location of the absorbers. This paper elucidates prospective in vivo PA characterization of carotid plaques by proposing a method to enhance PA image quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app