Add like
Add dislike
Add to saved papers

Robust Phase Velocity Dispersion Estimation of Viscoelastic Materials Used for Medical Applications Based on the Multiple Signal Classification Method.

Ultrasound shear wave elastography (SWE) is emerging as a promising imaging modality for the noninvasive evaluation of tissue mechanical properties. One of the ways to explore the viscoelasticity is through analyzing the shear wave velocity dispersion curves. To explore the dispersion, it is necessary to estimate the shear wave velocity at each frequency. An increase of the available spectrum to be used for phase velocity estimation is significant for a tissue dispersion analysis in vivo. A number of available methods suffer because the available spectrum that one can work with is limited. We present an alternative method to the classical 2-D Fourier transform (2D-FT) that uses the multiple signal classification (MUSIC) technique to provide robust estimation of the -space and phase velocity dispersion curves. We compared results from the MUSIC method with the 2D-FT technique twofold: by searching for maximum peaks and gradient-based strategy. We tested this method on digital phantom data created using finite-element methods (FEMs) in viscoelastic media as well as on the experimental phantoms used in the Radiological Society of North America Quantitative Imaging Biomarker Alliance effort for the standardization of shear wave velocity in liver fibrosis applications. In addition, we evaluated the algorithm with different levels of added noise for FEMs. The MUSIC algorithm provided dispersion curves estimation with lower errors than the conventional 2D-FT method. The MUSIC method can be used for the robust evaluation of shear wave velocity dispersion curves in viscoelastic media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app