JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Using Atomic Force Microscopy to Predict Tumor Specificity of ICAM1 Antibody-Directed Nanomedicines.

Nano Letters 2018 April 12
Atomic force microscopy (AFM) is a powerful tool to detect in vitro antibody-antigen interactions. To date, however, AFM-measured antibody-antigen interactions have yet to be exploited to predict in vivo tumor specificity of antibody-directed nanomedicines. In this study, we have utilized AFM to directly measure the biomechanical interaction between live triple negative breast cancer (TNBC) cells and an antibody against ICAM1, a recently identified TNBC target. For the first time, we provide proof-of-principle evidence that in vitro TNBC cell-ICAM1 antibody binding force measured by AFM on live cells more precisely correlates with in vivo tumor accumulation and therapeutic efficacy of ICAM1 antibody-directed liposomes than ICAM1 gene and surface protein overexpression levels. These studies demonstrate that live cell-antibody binding force measurements may be used as a novel in vitro metric for predicting the in vivo tumor recognition of antibody-directed nanomedicines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app