Add like
Add dislike
Add to saved papers

Tunable Pt-MoS x Hybrid Catalysts for Hydrogen Evolution.

Platinum (Pt)-based materials are inevitably among the best-performing electrocatalysts for hydrogen evolution reaction (HER). MoS2 was suggested to be a potent HER catalyst to replace Pt in this reaction by theoretical modeling; however, in practice, this dream remains elusive. Here we show a facile one-pot bottom-up synthesis of Pt-MoS x composites using electrochemical reduction in an electrolytic bath of Pt precursor and ammonium tetrathiomolybdate under ambient conditions. By modifying the millimolar concentration of Pt precursors, composites of different surface elemental composition are fabricated; specifically, Pt1.8 MoS2 , Pt0.1 MoS2.5 , Pt0.2 MoS0.6 , and Pt0.3 MoS0.8 . All electrodeposited Pt-MoS x hybrids showcase low overpotentials and small Tafel slopes that outperform MoS2 as an electrocatalyst. Tantamount to electrodeposited Pt, the rate-limiting process in the HER mechanism is determined to be the Heyrovsky desorption across Pt-MoS x hybrids and starkly swings from the rate-determining Volmer adsorption step in MoS2 . The Pt-MoS x composites are equipped with catalytic performance that closely mirrors that of electrodeposited Pt, in particular the HER kinetics for Pt1.8 MoS2 and Pt0.1 MoS2.5 . This work advocates electrosynthesis as a cost-effective method for catalyst design and fabrication of competent composite materials for water splitting applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app