Add like
Add dislike
Add to saved papers

Molecular Dynamics Study of Combustion Reactions in Supercritical Environment. Part 3: Boxed MD Study of CH 3 + HO 2 → CH 3 O + OH Reaction Kinetics.

The kinetics of reaction CH3 + HO2 → CH3 O + OH in supercritical carbon dioxide media at pressures from 0.3 to 1000 atm in the temperature range (600-1600) K was studied using boxed molecular dynamics simulations at QM/MM theory level with periodical boundary conditions. The mechanism of this process includes two consecutive steps: formation and decomposition of CH3 OOH intermediate. We calculated the activation free energies and rate constants of each step, then used Bodenstein's quasistationary concentrations approximation to estimate the rate constants of the reaction. On the basis of the temperature dependence of the rate constants, parameters in the extended Arrhenius equation were determined. We found that reaction rate of each step, as well as overall reaction, increases with increasing CO2 pressure in the system. The most effective zone for the process is T = 1000-1200 K, and the CO2 pressure is about 100 atm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app