Add like
Add dislike
Add to saved papers

Upregulation of nitric oxide in tumor cells as a negative adaptation to photodynamic therapy.

One of the advantages of PDT is that it can often circumvent tumor resistance to chemotherapeutic agents such as cisplatin and doxorubicin. However, pre-existing and acquired resistance to PDT has also been demonstrated. One type of resistance, which involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS/NOS2) in tumor cells, was discovered in the author's laboratory. When subjected to a 5-aminolevulinic acid (ALA)-based photodynamic challenge, several cancer lines, including breast, prostate, and glioma, underwent intrinsic apoptosis that could be substantially enhanced by iNOS enzymatic inhibitors or a NO scavenger, implying iNOS/NO-mediated resistance. In most cases, iNOS was significantly upregulated by the challenge and this appeared to be more important in the hyper-resistance than pre-existing enzyme. Of added importance was our observation that cells surviving ALA/light treatment typically exhibited a more aggressive phenotype, proliferating and migrating/invading more rapidly than controls in iNOS/NO-dependent fashion. Most of these in vitro PDT findings have recently been confirmed at the in vivo level, using a human breast tumor xenograft model. We have also shown that upregulated iNOS in PDT-targeted cells can elicit a pro-growth/migration response in non-targeted bystander cells, NO again playing a key role. Post-PDT resistance and potentially dangerous hyper-aggressiveness can be attenuated by inhibitors of iNOS enzymatic activity, some of which have seen pharmacologic use in non-cancer or PDT settings. These various aspects of PDT antagonism by tumor iNOS/NO and how they might be overcome will be discussed in this review. Lasers Surg. Med. 50:590-598, 2018.© 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app