Add like
Add dislike
Add to saved papers

Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery.

Nanoparticles (NPs) for oral delivery of peptide/protein drugs are largely limited due to the coexistence of intestinal mucus and epithelial barriers. Sequentially overcoming these two barriers is intractable for a single nanovehicle due to the requirements of different or even contradictory surface properties of NPs. To solve this dilemma, a mucus-penetrating virus-inspired biomimetic NP with charge reversal ability (P-R8-Pho NPs) was developed by densely coating poly(lactic- co-glycolic acid) NPs with cationic octa-arginine (R8) peptide and specific anionic phosphoserine (Pho). The small size (81.81 nm) and viruslike neutral charged surface (-2.39 mV) of the biomimetic NPs achieved rapid mucus penetration, which was almost equal to that of the conventional PEGylated mucus-penetrating nanoparticles. The hydrolysis of surface-anchored anionic Pho was achieved by intestinal alkaline phosphatase, which led to the turnover of ζ potential to positive (+7.37 mV). This timely charge reversal behavior also exposed cationic R8 peptide and induced efficient cell-penetrating peptide (CPP)-mediated cellular uptake and transepithelial transport on Caco-2/E12 cocultured cell model. What's more, P-R8-Pho NPs showed excellent stability in simulated gastrointestinal conditions and enhanced absorption in intestine in vivo. Finally, oral administration of insulin-loaded P-R8-Pho NPs enabled to induce a preferable hypoglycemic effect and a 1.9-fold higher oral bioavailability was achieved compared with single CPP-modified P-R8 NPs on diabetic rats. The combinative application of biomimetic mucus-penetrating strategy and enzyme-responsive charge reversal strategy in a single nanovehicle could sequentially overcome mucus and epithelial barriers, thus showing great potential for the oral peptide/protein delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app