Add like
Add dislike
Add to saved papers

Differential effects of long-term slow-pressor and subpressor angiotensin II on contractile and relaxant reactivity of resistance versus conductance arteries.

Vascular reactivity was evaluated in three separate arteries isolated from rats after angiotensin II (Ang II) was infused chronically in two separate experiments, one using a 14-day high, slow-pressor dose known to produce hypertension and the other using a 7-day low, subpressor but hypertensive-sensitizing dose. There were three new findings. First, there was no evidence of altered vascular reactivity in resistance arteries that might otherwise explain the hypertension due to the high Ang II or the hypertensive-sensitizing effect of the low Ang II dose. Second, the high Ang II dose exerted a novel differential effect on arterial contractile responsiveness to the sympathetic neurotransmitter, norepinephrine, depending on the level of sympathetic innervation. It clearly enhanced that responsiveness in the sparsely innervated aorta but not in small mesenteric resistance arteries or the proximal (conductance) portion of the caudal artery, both of which are densely innervated. This suggests that the increased expression of alpha adrenergic receptors after long-term exposure to Ang II as previously reported for aortic smooth muscle, is prevented in densely innervated arteries, likely due to long-term Ang II-mediated increase in sympathetic neural traffic to those vessels. Third, the same high dose of Ang II impaired aortic relaxation in response to the nitric oxide (NO) donor nitroprusside without impairing aortic endothelium-dependent relaxation. NO is the main relaxing substance released by aortic endothelium. Accordingly, it is possible that this dose of Ang II is also associated with enhanced release of and/or enhanced smooth muscle responsiveness to other endothelial relaxing substances in a compensatory capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app