JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Oxidoreductase-Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications.

Due to their 3D cross-linked networks and tunable physicochemical properties, polymer hydrogels with different sizes are applied widely in tissue engineering, drug-delivery systems, pollution regulation, ionic conducting electrolytes, agricultural drought-resistance, cosmetics, and the food industry. Novel, environmentally friendly, and efficient oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels have gained increasing attention. Herein, the recent advances on the use of novel enzyme-initiated systems for hydrogel polymerization, including the mechanisms, and molding of polymeric and hybrid-polymeric networks are reviewed. Preliminary progress related to interfacial enzymatic polymerization for the generation of hybrid micro/nanogels is introduced as an emerging initiating approach. In addition, certain biological applications in tissue engineering, bioimaging, and therapy are demonstrated step by step. Finally, some perspectives on the safety profile of enzymatic formed hydrogels, new enzymatic systems, and potential theranostic applications are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app