Add like
Add dislike
Add to saved papers

Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar.

Non-targeted metabolomic analyses employing nuclear magnetic resonance- and gas chromatography/mass spectrometry-based techniques were applied for an in-depth characterization of cabbage vinegar, an original agricultural product made from cabbage harvested in Tsumagoi, Japan. Water-soluble and volatile metabolite profiles of cabbage vinegar were compared with those of various vinegars: rice vinegar, grain vinegar, apple vinegar, and black vinegar (Japanese kurozu made of brown rice). Principal component analysis (PCA) of the water-soluble metabolites indicated that cabbage vinegars belonged to an isolated class by the contributions of fructose, pyroglutamic acid, choline, and methiin (S-methylcysteine sulfoxide). Regarding the volatile compounds, the PCA data represented that rice, black, and apple vinegars were characterized by most of the dominant volatiles, such as acetate esters, alcohols, ketones, and acids. Cabbage and grain vinegars were included in the same class although these two vinegars have different flavors. Orthogonal partial least squares-discrimination analysis exhibited the differences in volatile compound profile between cabbage and grain vinegars, revealing that cabbage vinegars were characterized by the presence of sulfides (dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide), nitriles (allyl cyanide and 4-methylthio-butanenitrile), 3-hexene-1-ol, and crotonic acid. The time-course changes in these highlighted compounds during the acetic acid fermentation of cabbage vinegar suggested that pyroglutamic and crotonic acids were produced through fermentation, whereas choline, methiin, sulfides, nitriles, and 3-hexene-1-ol were derived from cabbage, suggesting the key role of these compounds in the unique taste and flavor of cabbage vinegar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app