Add like
Add dislike
Add to saved papers

Immuno-PET Imaging of 89 Zr Labeled Anti-PD-L1 Domain Antibody.

Recently, various immuno-PET tracers based on monoclonal antibodies (mAbs), engineered scaffold proteins, and peptides were developed to target either programmed cell death protein 1 (PD-1) or programmed cell death ligand 1 (PD-L1), showing promise in assessment of immune checkpoints. We sought to develop an immunotherapeutic agent based PET probe that enables real-time assessment of PD-L1 expression and evaluation of antibody drug biodistribution to select eligible candidates for anti-PD-1/PD-L1 immunotherapies. KN035, a 79.6 kDa size anti-PD-L1 domain antibody under analysis in clinical trials, was used to develop the immuno-PET probe, 89 Zr-Df-KN035. Immuno-PET studies were performed to monitor PD-L1 levels in nude mice bearing LN229 xenografts with positive expression for PD-L1, and to evaluate the whole-body biodistribution in healthy non-human primates (NHPs). LN229 xenografts were markedly visualized from 24 h after injection of 89 Zr-Df-KN035, with elevated accumulation persisting for up to 120 h. Tumor radioactivity was notably reduced in the presence of excess KN035. Mouse ex vivo biodistribution studies performed at 24 and 120 h revealed tumor-to-muscle ratios as high as 5.64 ± 0.65 and 7.70 ± 1.37, respectively. In the NHP model, PET imaging demonstrated low background. The liver and kidney showed moderate accumulation with the highest SUVmean value of 1.15 ± 0.15 and 2.13 ± 0.10 at 72 h, respectively. The spleen, lymph nodes, and salivary glands were also slightly visualized. In conclusion, 89 Zr-Df-KN035, a novel anti-PD-L1 domain antibody-based probe, shows the feasibility of noninvasive in vivo evaluation of PD-L1 expression. This work further provides a template for immunotherapeutic agent based imaging to evaluate human PD-L1 expression and to augment our understanding of therapeutic agent biodistribution, leading to better therapeutic strategies in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app