Add like
Add dislike
Add to saved papers

Impact of plasma glucose level on the pattern of brain FDG uptake and the predictive power of FDG PET in mild cognitive impairment.

PURPOSE: Increased blood glucose level (BGL) has been reported to cause alterations of FDG uptake in the brain that mimic Alzheimer's disease (AD), even within the "acceptable" range ≤ 160 mg/dl. The aim of this study was (i) to confirm this in a large sample of well-characterized normal control (NC) subjects, and (ii) to analyze its impact on the prediction of AD dementia (ADD) in mild cognitive impairment (MCI).

METHODS: The study included NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) that were cognitively stable for ≥36 months after PET (n = 87, 74.2 ± 5.3 y), and ADNI MCIs with ≥36 months follow-up if not progressed to ADD earlier (n = 323, 71.1 ± 7.1 y). Seventy-three of the MCIs had progressed to ADD within 36 months. In the NCs, parenchyma-scaled FDG uptake was tested for clusters of correlation with BGL on the family-wise, error-corrected 5% level. In the MCIs, ROC analysis was used to assess the power of FDG uptake in a predefined AD-typical region for prediction of ADD. ROC analysis was repeated after correcting mean FDG uptake in the AD-typical region for BGL based on linear regression in the NCs.

RESULTS: In the NCs, BGL (59-149 mg/dl) was negatively correlated with FDG uptake in a cluster comprising the occipital cortex and precuneus but sparing the posterior cingulate, independent of amyloid-β and ApoE4 status. In the MCIs, FDG uptake in the AD-typical region provided an area of 0.804 under the ROC curve for prediction of ADD. Correcting FDG uptake in the AD-typical region for BGL (55-189 mg/dl) did not change predictive performance (area = 0.808, p = 0.311).

CONCLUSIONS: Increasing BGL is associated with relative reduction of FDG uptake in the posterior cortex even in the "acceptable" range ≤ 160 mg/dl. The BGL-associated pattern is similar to the typical AD pattern, but not identical. BGL-associated variability of regional FDG uptake has no relevant impact on the power of FDG PET for prediction of MCI-to-ADD progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app