Add like
Add dislike
Add to saved papers

AMPKα inactivation destabilizes atherosclerotic plaque in streptozotocin-induced diabetic mice through AP-2α/miRNA-124 axis.

Diabetes mellitus is one of risk factors of cardiovascular diseases including atherosclerosis. Whether and how diabetes promotes the formation of unstable atherosclerotic plaque is not fully understood. Here, we show that streptozotocin-induced type 1 diabetes reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout (Apoe-/- ) mice. These detrimental effects of hyperglycemia on plaque stability were reversed by metformin in vivo without altering the levels of blood glucose and lipids. Mechanistically, we found that high glucose reduced the phosphorylated level of AMP-activated protein kinase alpha (AMPKα) and the transcriptional activity of activator protein 2 alpha (AP-2α), increased the expression of miR-124 expression, and downregulated prolyl-4-hydroxylase alpha 1 (P4Hα1) protein expression and collagen biosynthesis in cultured vascular smooth muscle cells. Importantly, these in vitro effects produced by high glucose were abolished by AMPKα pharmacological activation or adenovirus-mediated AMPKα overexpression. Further, adenovirus-mediated AMPKα gain of function remitted the process of diabetes-induced plaque destabilization in Apoe-/- mice injected with streptozotocin. Administration of metformin enhanced pAP-2α level, reduced miR-124 expression, and increased P4Hα1 and collagens in carotid atherosclerotic plaque in diabetic Apoe-/- mice. We conclude that streptozotocin-induced toxic diabetes promotes the formation of unstable atherosclerotic plaques based on the vulnerability index in Apoe-/- mice, which is related to the inactivation of AMPKα/AP-2α/miRNA-124/P4Hα1 axis. Clinically, targeting AMPKα/AP-2α/miRNA-124/P4Hα1 signaling should be considered to increase the plaque stability in patients with atherosclerosis.

KEY MESSAGES: Hyperglycemia reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout mice. Hyperglycemia destabilizes atherosclerotic plaque in vivo through an AMPKα/AP-2α/miRNA-124/P4Hα1-dependent collagen synthesis. Metformin functions as a stabilizer of atherosclerotic plaque to reduce acute coronary accent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app