Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma.

Multiple myeloma (MM), the second most common hematologic malignancy, is an incurable disease characterized by the accumulation of malignant plasma cells within the bone marrow. Though great progresses have been made in understanding the mechanisms of MM, metabolic plasticity and drug resistance remain largely unknown. In this study, we found lncRNA Protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P) is highly expressed in MM and is associated with the survival rate of MM patients. PDIA3P regulates MM growth and drug resistance through Glucose 6-phosphate dehydrogenase (G6PD) and the pentose phosphate pathway (PPP). Mechanistically, we revealed that PDIA3P interacts with c-Myc to enhance its transactivation activity and binding to G6PD promoter, stimulating G6PD expression and PPP flux. Our study identified PDIA3P as a novel c-Myc interacting lncRNA and elucidated crucial roles for PDIA3P in metabolic regulation of MM, providing a potential therapeutic target for MM patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app