Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Pleural manometry-historical background, rationale for use and methods of measurement.

Subatmospheric pleural pressure (Ppl), which is approximately -3 to -5 cmH2 O at functional residual capacity (FRC) makes pleura a unique organ in the human body. The negative Ppl is critical for maintaining the lungs in a properly inflated state and for proper blood circulation within the thorax. Significant and sudden pleural pressure changes associated with major pleural pathologies, as well as therapeutic interventions may be associated with life-threatening complications. The pleural pressure may show two different values depending on the measurement method applied. These are called pleural liquid pressure and pleural surface pressure. It should also be realized that there are significant differences in pleural pressure distribution in pneumothorax and pleural effusion. In pneumothorax, the pressure is the same throughout the pleural space, while in pleural effusion there is a vertical gradient of approximately 1 cm H2 O/cm in the pleural pressure associated with the hydrostatic pressure of the fluid column. Currently, two main methods of pleural pressure measurement are used: simple water manometers and electronic systems. The water manometers are conceptually simple, cheap and user-friendly but they only allow the estimation of the mean values of pleural pressure. The electronic systems for pleural pressure measurement are based on pressure transducers. Their major advantages include precise measurements of instantaneous pleural pressure and the ability to display and to store a large amount of data. The paper presents principles and details of pleural pressure measurement as well as the rationale for its use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app