Add like
Add dislike
Add to saved papers

Simultaneous accurate quantification of HO-1, CD39, and CD73 in human calcified aortic valves using multiple enzyme digestion - filter aided sample pretreatment (MED-FASP) method and targeted proteomics.

Talanta 2018 May 16
Several proteins such as membrane-associated ectonucleotidases: ecto-5'-nucleotidase (E5NT/CD73) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), and intracellular heme oxygenase-1 (HO-1) may contribute to protection from inflammation-related diseases such as calcific aortic valve stenosis (CAS). Accurate quantification of these proteins could contribute to better understanding of the disease mechanisms and identification of biomarkers. This report presents development and validation of quantification method for E5NT/CD73, ENTPD1/CD39 and HO-1. The multiplexed targeted proteomic assay involved antibody-free, multiple-enzyme digestion, filter-assisted sample preparation (MED-FASP) strategy and a nanoflow liquid chromatography/mass spectrometry under multiple reaction monitoring mode (LC-MRM/MS). The method developed presented high sensitivity (LLOQ of 5 pg/mL for each of the analytes) and accuracy that ranged from 92.0% to 107.0%, and was successfully applied for the absolute quantification of HO-1, CD39 and CD73 proteins in homogenates of human calcified and non-calcified valves. The absolute CD39 and CD73 concentrations were lower in calcified aortic valves (as compared to non-stenotic ones) and were found to be: 1.16 ± 0.39 vs. 3.15 ± 0.37 pmol/mg protein and 1.94 ± 0.21 vs. 2.39 ± 0.39 pmol/mg protein, respectively, while the quantity of HO-1 was elevated in calcified valves (10.72 ± 1.18 vs. 4.28 ± 0.42 amol/mg protein). These results were consistent but more reproducible as compared to immunoassays. In conclusion, multiplexed quantification of HO-1, CD39 and CD73 proteins by LC-MRM/MS works well in challenging human tissues such as aortic valves. This analysis confirmed the relevance of these proteins in pathogenesis of CAS and could be extended to other biomedical investigations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app