Add like
Add dislike
Add to saved papers

Solvent-stir bar microextraction system using pure tris-(2-ethylhexyl) phosphate as supported liquid membrane: A new and efficient design for the extraction of malondialdehyde from biological fluids.

Talanta 2018 May 16
A novel and efficient device of solvent stir-bar microextraction (SSBME) system coupled with GC-FID detection was introduced for the pre-concentration and determination of malondialdehyde (MDA) in different biological matrices. In the proposed device, a piece of porous hollow fiber was located on a magnetic rotor by using a stainless steel-wire (as a mechanical support) and the whole device could stir with the magnetic rotor in sample solution cell. The device provided higher pre-concentration factor and better precision in comparison with conventional SBME due to the reproducible, stable and high contact area between the stirred sample and the hollow fiber. Organic solvent type, donor and acceptor phase pH, temperature, electrolyte concentration, agitation speed, extraction time, and sample volume as the effective factors on the SSBME efficiency, were examined and optimized. Pure tris-(2-ethylhexyl) phosphate (TEHP) was examined for the first time as supported liquid membrane (SLM) for the determination of MDA by SSBME method. In contrast to the conventional SLMs of SBME in the literature, the SLM of TEHP was highly stable in contact with biological fluids and provided the highest extraction efficiency. Under optimized extraction conditions, the method provided satisfactory linearity in the range 1-500 ng mL-1 , low LODs (0.3-0.7 ng mL-1 ), good repeatability and reproducibility (RSD% (n = 5) < 4.5) with the pre-concentration factors higher than 130-fold. To verify the accuracy of the proposed method, the traditional spectrophotometric TBA (2-thiobarbituric acid) test was used as a reference method. Finally, the proposed method was successfully applied for the determination and quantification of MDA in biological fluids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app