Add like
Add dislike
Add to saved papers

Continuous arch and rectangular loops for the correction of consistent and inconsistent load systems in extruded and tipped maxillary second molars.

INTRODUCTION: The aim of this research was to compare the load systems produced by rectangular loops and continuous arches for the correction of extruded second molars with a mesial inclination (inconsistent system) and a distal inclination (consistent system).

METHODS: The maxillary first molar of an acrylic model of a patient, with passive brackets and tubes bonded, was connected to a 3-dimensional load cell of an orthodontic force tester, and the second molar was replaced by its respective tube bonded to a second load cell. The second molar tube was moved 2.5 mm occlusally and tipped 20° mesially and distally, creating an inconsistent force system and a consistent force system. For each situation, ten 0.017 × 0.025-in beta-titanium, 8 × 10-mm rectangular loops were compared with 10 0.014-in nickel-titanium continuous arches. The vertical forces-F(z)-and tipping moments-M(x)-were compared using 4 t tests, at 5%.

RESULTS: In the inconsistent group, the rectangular loop produced a larger M(x) in both molars: 2.11 N.mm in the second molar compared with the -0.15 N.mm of the continuous arches. On the first molar, the rectangular loops produced -5.58 N.mm against -2.08 N.mm produced by the continuous arches. The F(z) values produced at the second molar with each system were similar, whereas on the first molar they were different; the rectangular loops produced 0.41N, and continuous arches produced 0.53N. In the consistent group, the rectangular loops produced smaller M(x) values at the second molar (-3.06 N.mm) than did the continuous arch (-4.25 N.mm) (P = 0.01), as well as a smaller F(z) value (-0.52 vs -0.92 N, respectively). At the first molar, the rectangular loops produced smaller M(x) values (-2.32 N.mm) than did the continuous arch (-4.18 N.mm), as well as a smaller F(z) value (0.59 vs 1.10 N).

CONCLUSIONS: In the inconsistent group, only the rectangular loop produced a system of force that could correct the second molar. In the consistent system, both group mechanics produced a system of force compatible with the correction of the second molar, but the continuous wire produced larger moments. Both groups showed a tendency for mesial crown tipping of the first molar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app