Add like
Add dislike
Add to saved papers

Perfluorooctyl bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy.

Biomaterials 2018 May
As a highly biocompatible NIR dye, indocyanine green (ICG) has been widely explored for cancer treatment due to its various energy level transition pathways upon NIR light excitation simultaneously, which leads to different theranostic effects (eg. Photoacoustic (PA) and fluorescence imaging (FL), photodynamic and photothermal therapy (PDT&PTT)). However, the theranostic efficiency of ICG is restricted intrinsically, owing to the competitive relationship of its co-existing imaging and therapeutic effect. Moreover, the extrinsic hypoxia nature of tumor further limits its therapeutic effect, especially for the oxygen-dependent PDT. Herein, perfluorooctyl bromide (PFOB), another biocompatible chemical, was integrated with ICG in a nanoliposome structure via a facile two-step emulsion method. Such an ICG&PFOB co-loaded nanoliposomes (LIP-PFOB-ICG) realized computed tomography (CT) contrast imaging in vivo, providing better anatomical information of tumor in comparison to ICG enabled PA and FL imaging. More importantly, LIP-PFOB-ICG inhibited MDA-MB-231 tumor growth completely via intravenous injection through enhanced PDT&PTT synergistic therapy due to the excellent oxygen carrying ability of PFOB, which effectively attenuated tumor hypoxia, improved the efficiency of collisional energy transfer between ICG and oxygen and reduced the expression of heat shock protein (HSP). As expected, the introduction of PFOB within nanoliposomes with ICG has augmented the theranostic effect of ICG comprehensively, which makes this simple biocompatible liposome-based nanoagent a potential candidate for clinical imaging guided phototherapy of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app