Add like
Add dislike
Add to saved papers

Choice of reconstitution protocol modulates the aggregation state of full-length membrane-reconstituted synaptotagmin-1.

Synaptotagmin-1 (Syt1) functions as the Ca2+ sensor in neuronal exocytosis, and it is routinely incorporated into lipid bilayers along with other components of the fusion machinery in order to reconstruct the in vivo fusion process. Here, we demonstrate that the detergent used to reconstitute full-length Syt1 has a significant effect on the state of the protein in bilayers. When octyl-β-d-glucopyranoside is used to reconstitute the protein, Syt1 is present in an aggregated state that is mediated by the long juxta-membrane linker. EPR spectra from spin labels in the two C2 domains of Syt1 no longer resemble those obtained from a soluble construct containing these domains, and the C2B domain no longer exhibits a Ca2+ -dependent membrane insertion. In contrast, when reconstituted using 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, Syt1 is largely monomeric and the EPR spectra from C2A and C2B resemble those of the soluble construct. This result demonstrates that the choice of detergent used to reconstitute Syt1 can modulate the state of the neuronal Ca2+ -sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app