Add like
Add dislike
Add to saved papers

Cutaneous neural activity and endothelial involvement in cold-induced vasodilatation.

Whether sympathetic withdrawal or endothelial dilators such as nitric oxide (NO) contributes to cold-induced vasodilation (CIVD) events is unclear. We measured blood flow and finger skin temperature (Tfinger ) of the index finger in nine participants during hand immersion in a water bath at 35 °C for 30 min, then at 8 °C for 30 min. Data were binned into 10 s averages for the entire 60 min protocol for laser-Doppler flux (LDF) and Tfinger . At baseline, Tfinger was 35.3 ± 0.2 °C and LDF was 227 ± 28 PU. During hand cooling, minimum Tfinger was 10.9 ± 0.4 °C and LDF was 15 ± 4 PU. All participants exhibited at least one CIVD event (Tfinger increase ≥ 1 °C), with a mean peak Tfinger 13.2 ± 0.8 °C and a corresponding peak LDF of 116 ± 34 PU. A Morlet mother wavelet was then used to perform wavelet analysis on the LDF signal, with frequency ranges of 0.005-0.01 Hz (endothelial NO-independent), 0.01-0.02 Hz (endothelial NO-dependent), and 0.02-0.05 Hz (neurogenic). The synchronicity of wavelet fluctuations with rising LDF coincident with CIVD events was then quantified using Auto-regressive Integrated Moving Average time-series analysis. Fluctuations in neural activity were strongly synchronized in real time with increasing LDF (stationary-r2  = 0.73 and Ljung-box statistic > 0.05), while endothelial activities were only moderately synchronized (NO-independent r2  = 0.15, > 0.05; NO dependent r2  = 0.16, > 0.05). We conclude that there is a direct, real-time correlation of LDF responses with neural activity but not endothelial-mediated mechanisms. Importantly, it seems that neural activity is consistently reduced prior to CIVD, suggesting that sympathetic withdrawal directly contributes to CIVD onset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app