Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Spin-orbit interaction of light induced by transverse spin angular momentum engineering.

The investigations on optical angular momenta and their interactions have broadened our knowledge of light's behavior at sub-wavelength scales. Recent studies further unveil the extraordinary characteristics of transverse spin angular momentum in confined light fields and orbital angular momentum in optical vortices. Here we demonstrate a direct interaction between these two intrinsic quantities of light. By engineering the transverse spin in the evanescent wave of a whispering-gallery-mode-based optical vortex emitter, a spin-orbit interaction is observed in generated vortex beams. Inversely, this unconventional spin-orbit interplay further gives rise to an enhanced spin-direction locking effect in which waveguide modes are unidirectionally excited, with the directionality jointly controlled by the spin and orbital angular momenta states of light. The identification of this previously unknown pathway between the polarization and spatial degrees of freedom of light enriches the spin-orbit interaction phenomena, and can enable various functionalities in applications such as communications and quantum information processing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app