Add like
Add dislike
Add to saved papers

Reproductive trade-offs in a temperate reef fish under high pCO 2 levels.

Fishes are currently facing novel types of anthropogenic stressors that have never experienced in their evolutionary history, such as ocean acidification. Under these stressful conditions, energetically costly processes, such as reproduction, may be sacrificed for increased chances of survival. This trade-off does not only affect the organism itself but may result in reduced offspring fitness. In the present study, the effects of exposure to high pCO2 levels were tested on the reproductive performance of a temperate species, the two-spotted goby, Gobiusculus flavescens. Breeding pairs were kept under control (∼600 μatm, pH∼ 8.05) and high pCO2 levels (∼2300 μatm, pH∼ 7.60) conditions for a 4-month period. Additionally, oxidative stress and energy metabolism-related biomarkers were measured. Results suggest that reproductive activity is stimulated under high pCO2 levels. Parental pairs in the simulated ocean acidification conditions exhibited increased reproductive output, with 50% more clutches and 44% more eggs per clutch than pairs under control conditions. However, there was an apparent trade-off between offspring number and size, as larvae of parental pairs under high pCO2 levels hatched significantly smaller, suggesting differences in parental provisioning, which could be related to the fact that these females produce more eggs. Moreover, results support the hypothesis of different energy allocation strategies used by females under high pCO2 conditions. These changes might, ultimately, affect individual fitness and population replenishment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app