JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Redundant angiogenic signaling and tumor drug resistance.

Angiogenesis research in the past two decades has contributed significantly towards understanding the molecular pathophysiology of cancer progression and inspired target-oriented research and pharma industry for the development of novel anti-angiogenic agents. Currently, over eleven drugs targeting angiogenesis have been approved by the FDA for the treatment of various malignancies. Of the registered anti-angiogenic clinical trials until the end of 2017 (ClinicalTrials.gov), over 47% were completed, 10% were terminated, 3% withdrawn, over 0.5% were suspended and only 4 trials have culminated in FDA approval for marketing. On the one hand, the clinical benefits of anti-angiogenic drugs prompted the development of novel anti-angiogenic agents. On the other hand, however, a plethora of recent studies demonstrated the emergence of tumor drug resistance towards currently used anti-angiogenic therapeutics. Series of preclinical and clinical studies have highlighted the enigma of drug resistance with functional bypass pathways, and identified compensatory or alternative angiogenic mechanisms assuring tumor growth in the midst of an anti-angiogenic stress environment. In the present review the classical literature of such redundant angiogenic pathways in concert with the key angiogenic factors and specialized cells involved in anti-angiogenic escape mechanisms is described. A strategic discourse regarding increasing tumor drug resistance and future modalities for anti-angiogenic therapy is also discussed in view of recent advances.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app