Add like
Add dislike
Add to saved papers

Facile synthesis of 1,2-dione-containing abietane analogues for the generation of human carboxylesterase inhibitors.

Recently, a series of selective human carboxylesterase inhibitors have been identified based upon the tanshinones, with biologically active molecules containing a 1,2-dione group as part of a naphthoquinone core. Unfortunately, the synthesis of such compounds is complex. Here we describe a novel method for the generation of 1,2-dione containing diterpenoids using a unified approach, by which boronic acids are joined to vinyl bromo-cyclohexene derivatives via Suzuki coupling, followed by electrocyclization and oxidation to the o-phenanthroquinones. This has allowed the construction of a panel of miltirone analogues containing an array of substituents (methyl, isopropyl, fluorine, methoxy) which have been used to develop preliminary SAR with the two human carboxylesterase isoforms. As a consequence, we have synthesized highly potent inhibitors of these enzymes (Ki  < 15 nM), that maintain the core tanshinone scaffold. Hence, we have developed a facile and reproducible method for the synthesis of abietane analogues that have resulted in a panel of miltirone derivatives that will be useful tool compounds to assess carboxylesterase biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app