JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-throughput profiling of seasonal variations of antibiotic resistance gene transport in a peri-urban river.

The rapid expansion of human activity in a region can exacerbate human health risks induced by antibiotic resistance genes (ARGs). Peri-urban ecosystems serve at the symbiotic interface between urban and rural ecosystems, and investigations into the dissemination of ARGs in peri-urban areas provide a basic framework for tracking the spread of ARGs and potential mitigations. In this study, through the use of high-throughput quantitative PCR and 16S rRNA gene high-throughput sequencing, seasonal and geographical distributions of ARGs and their host bacterial communities were characterized in a peri-urban river. The abundance of ARGs in downstream was 5.2-33.9 times higher than upstream, which indicated distinct antibiotic resistance pollution in the areas where human lives. With the comparison classified based on land use nearby, the abundance of ARGs in samples near farmland and villages was higher than in the background (3.47-5.58 times), pointing to the high load in the river caused by farming and other human activities in the peri-urban areas. With the co-occurrence pattern revealed by network analysis, blaVEB and tetM were proposed to be indicators of ARGs which get together in the same module. Furthermore, seasonal variations in ARGs and the transport of bacterial communities were observed. The effects of seasonal temperature on the dissemination of ARGs along the watershed was also evaluated. The highest absolute abundance of ARGs occurred in summer (2.81 × 109  copies/L on average), the trends of ARG abundances in four seasons were similar with local air temperature. The Linear discriminant analysis effect size (LEfSe) suggested that nine bacterial genera were implicated as biomarkers for the corresponding season. Mobile genetic elements (MGEs) showed significant positive correlation with ARGs (P < 0.01) and MGEs were also identified as the key-contributing factor driving ARG alteration. This study provides an overview of seasonal and geographical variations in ARGs distribution in a peri-urban river and draws attention to controlling pollutants in peri-urban ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app