Add like
Add dislike
Add to saved papers

Borago officinalis L. attenuates UVB-induced skin photodamage via regulation of AP-1 and Nrf2/ARE pathway in normal human dermal fibroblasts and promotion of collagen synthesis in hairless mice.

Ultraviolet B (UVB) irradiation is regarded as the main cause of skin photodamage. After exposure to UVB irradiation, collagen degradation is accelerated by upregulation of matrix metalloproteinases (MMPs), and collagen synthesis is decreased via downregulation of transforming growth factor (TGF)-β1 signaling. Borago officinalis L. (BO) is an annual herb with medicinal and culinary applications. Although BO has been demonstrated to have antioxidant and anti-inflammatory activities, its potential anti-photoaging effects have not been examined. In this study, we examined the protective effects of BO against skin photodamage in UVB-exposed normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. BO downregulated the expression of MMP-1, MMP-3, and IL-6, and enhanced TGF-β1 by modulating activator protein (AP-1) and nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling in UVB-irradiated NHDFs. We also found that dietary BO reduced wrinkle formation, epidermal thickness, and erythema in UVB-exposed skin. Moreover, skin hydration and collagen synthesis were improved by dietary BO treatment. Our results demonstrate that BO can be used in functional foods, cosmetic products, and medicines for prevention and treatment of UVB-induced skin photodamage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app