Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Receptor binding profiles and behavioral pharmacology of ring-substituted N,N-diallyltryptamine analogs.

Neuropharmacology 2018 November
Substantial effort has been devoted toward understanding the psychopharmacological effects of tryptamine hallucinogens, which are thought to be mediated by activation of 5-HT2A and 5-HT1A receptors. Recently, several psychoactive tryptamines based on the N,N-diallyltryptamine (DALT) scaffold have been encountered as recreational drugs. Despite the apparent widespread use of DALT derivatives in humans, little is known about their pharmacological properties. We compared the binding affinities of DALT and its 2-phenyl-, 4-acetoxy-, 4-hydroxy-, 5-methoxy-, 5-methoxy-2-methyl-, 5-fluoro-, 5-fluoro-2-methyl-, 5-bromo-, and 7-ethyl-derivatives at 45 receptor and transporter binding sites. Additionally, studies in C57BL/6 J mice examined whether these substances induce the head twitch response (HTR), a 5-HT2A receptor-mediated response that is widely used as a behavioral proxy for hallucinogen effects in humans. Most of the test drugs bound to serotonin receptors, σ sites, α2 -adrenoceptors, dopaminergic D3 receptors, histaminergic H1 receptors, and the serotonin transporter. DALT and several of the ring-substituted derivatives were active in the HTR assay with the following rank order of potency: 4-acetoxy-DALT > 5-fluoro-DALT > 5-methoxy-DALT > 4-hydroxy-DALT > DALT > 5-bromo-DALT. 2-Phenyl-DALT, 5-methoxy-2-methyl-DALT, 5-fluoro-2-methyl-DALT, and 7-ethyl-DALT did not induce the HTR. HTR potency was not correlated with either 5-HT1A or 5-HT2A receptor binding affinity, but a multiple regression analysis indicated that 5-HT2A and 5-HT1A receptors make positive and negative contributions, respectively, to HTR potency (R2  = 0.8729). In addition to supporting the established role of 5-HT2A receptors in the HTR, these findings are consistent with evidence that 5-HT1A activation by tryptamine hallucinogens buffers their effects on HTR. This article is part of the Special Issue entitled 'Psychedelics: New Doors, Altered Perceptions'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app