Add like
Add dislike
Add to saved papers

Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications.

This study is aimed at producing biofilms by reinforcement of Magnesium Oxide (MgO) nanoparticles in polylactic acid (PLA) biopolymer using the solvent casting method. In this study MgO nanoparticles (up to 4wt%) were reinforced in PLA biopolymer and their key mechanical, barrier, thermal and antibacterial properties were investigated for food packaging applications. Among the prepared biocomposite films, the 2wt% reinforced PLA films showed the maximum improvement in tensile strength and oxygen barrier properties (up to 29% and 25% respectively) in comparison to pristine PLA films. However, the water vapor barrier properties decreased by nearly 25% due to interfacial behavior and presence of free volumes near MgO nanoparticles. PLA/MgO films also exhibited superior antibacterial efficacy. The 2wt% biofilms caused progressive damage and death of nearly 46% of E. coli bacterial culture after 12h treatment. The produced films are transparent, capable of screening UV radiations and exhibit superior antibacterial efficacy making them an excellent food packaging material.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app