Add like
Add dislike
Add to saved papers

Diesel exhaust particles up-regulate interleukin-17A expression via ROS/NF-κB in airway epithelium.

IL-17A is implicated in many aspects of pathogenesis of severe asthma, including inducing neutrophilic inflammation, airway hyperresponsiveness, steroid insensitivity and airway remodeling. Diesel exhaust particles (DEP) emission from vehicles has been shown to expand Th17 cells to increase IL-17A release that contributes to DEP-mediated exacerbation of asthma severity. It is not known whether non-immune cells in airways may also release IL-17A in response to DEP exposure. In this study, We found IL-17A expression was upregulated in the epithelium of severe allergic asthma patients from high road traffic pollution areas compared to those in low. Furthermore, we found DEP concentration-dependently increased IL-17A synthesis and release by 122.3 ± 15.72% and 235.5 ± 18.37%, respectively in primary bronchial epithelial cells (PBEC), accompanied with increased ROS production. Pretreatment of ROS scavenger (NAC) significantly inhibited DEP-induced IL-17A mRNA expression. DEP-induced IκBα degradation can be inhibited by NAC. We also found DEP increased p65 and RelB subunits expression, and pretreatment of NF-κB inhibitor (SN50) also inhibited DEP-induced IL-17A expression. We further found DEP increased NF-κB subunit RelB recruitment to IL-17A promoter in PBEC and airway tissue of severe allergic asthma patients from high road traffic pollution areas. These results indicate DEP stimulates IL-17A expression in airway epithelium through ROS/NF-κB pathway, and provide a possible link between traffic pollution exposure and IL-17A-related responses in severe allergic asthma patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app