Add like
Add dislike
Add to saved papers

Hydrolysis of organometallic and metal-amide precursors: synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters and metal oxide nanoparticles.

The hydrolysis reaction between Brønsted basic organometallic or metal-amide reagents with Brønsted acidic OH groups from water or metal-hydroxides may act as a controlled stoichiometric strategy for the formation of M-O-M bonds, if careful consideration of reaction conditions is employed. This article explores the utilisation of highly reactive organometallic and metal-amide complexes from across the periodic table as reagents for the synthesis of metal-oxo clusters, oxo-bridged heterobimetallics and metal oxide nanoparticles. Such reactivity typically occurs at low temperatures with the release of hydrocarbon or amine by-products. The impact of ligand coordination, M-C bond strength, M-OH acidity and reaction temperature are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app