Add like
Add dislike
Add to saved papers

Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening.

Materials 2018 March 3
Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a "twin intersection"-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app