Add like
Add dislike
Add to saved papers

Red blood cell membrane damage by light-induced thermal gradient under optical trap.

Rapid membrane damage of optically trapped red blood cells (RBCs) was observed at trapping powers ≥280 mW. An excellent agreement between the estimated laser-induced thermal gradient across trapped cell's membrane and that typically required for membrane electropermeabilization suggests a mechanism involving temperature gradient-induced electropermeabilization of membrane. Also the rapid collapse of the trapped cell due to membrane rupture was seen to cause shock waves in the surroundings permeabilizing nearby untrapped cells. When the experiments were carried out with RBCs collected from type II diabetic patients, a noticeable change in the damage rate compared to normal RBCs was seen suggesting a novel optical diagnosis method for the disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app