Add like
Add dislike
Add to saved papers

Low-Cost K 4 Fe(CN) 6 as a High-Voltage Cathode for Potassium-Ion Batteries.

ChemSusChem 2018 April 26
Potassium-ion batteries (KIBs) are of interest for large-scale electrical energy storage, owing to the abundance of K resources and potential high energy density. Low-cost cathodes with high performance are crucial for KIBs. Herein, K4 Fe(CN)6 is shown to be a low-cost and high-voltage cathode for KIBs. It can deliver a high voltage of approximately 3.6 V and a discharge capacity of 65.5 mAh g-1 with a lifespan of 400 cycles of discharge and charge. This is attributed to the strong σ bonds between C atoms and Fe and to the reduced particle size and good contact with conductive carbon brought about by ball milling, which benefit both the K+ ion and the electronic conduction. The [Fe(CN)6 ]3-/4- redox couple is found to be responsible for charge compensation upon reversible extraction/insertion of K+ from/into K4 Fe(CN)6 . The high voltage and stability of K4 Fe(CN)6 will make it a promising low-cost cathode for KIBs and encourage more investigations into high-performance cathode materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app