Add like
Add dislike
Add to saved papers

Enhancing the Lithium Storage Performance of Graphene/SnO 2 Nanorods by a Carbon-Riveting Strategy.

ChemSusChem 2018 April 26
Graphene/metal oxide (MO) nanocomposites hold great promise for application as anodes in lithium-ion batteries (LIBs). However, the restacking of graphene during subsequent processing remains a challenge to overcome for enhanced lithium storage properties. Herein, the fabrication of sandwich-architecture carbon-riveted graphene/SnO2 nanorods, in which the SnO2 nanorods are confined in the nanospaces formed by the carbon layers on graphene, by a two-step hydrothermal process followed by thermal treatment, is reported. Electrochemical tests show that the carbon-riveted nanolayers significantly improve the lithium storage performance of graphene/SnO2 . The nanocomposite displays a high reversible capacity of 815 mAh g-1 after 150 cycles at 100 mA g-1 and high cycling stability at 1000 mA g-1 . This work provides an efficient way to manipulate graphene/MO-based nanocomposites for LIBs with improved performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app