Add like
Add dislike
Add to saved papers

Phenolic acid-tethered isoniazid for abrogation of drug-induced hepatotoxicity: design, synthesis, kinetics and pharmacological evaluation.

Morphological and metabolic aberrations in the liver caused by long-term use of anti-tubercular agent isoniazid (INH) have been an issue of great concern in tuberculosis treatment. To resolve this issue, a novel hepatoprotective prodrug strategy was developed by combining the antioxidant property of phenolic acids with INH moiety for probable synergistic effect. In this work, INH was conjugated with phenolic antioxidants using Schotten-Baumann reaction through biocleavable amide linkage. Synthesized prodrugs were characterized by spectral analysis and in vitro release studies were carried out using HPLC. They were found to be stable in acidic (pH 1.2), basic (pH 7.4) buffers, stomach homogenates of rat whereas hydrolyzed significantly (56.03-88.62%) in intestinal homogenates over a period of 6 h. Further their hepatoprotective potential was evaluated in male Wistar rats by performing liver function tests, oxidative stress markers, and histopathology studies. All the prodrugs were effective in abating oxidative stress and re-establishing normal hepatic physiology. Especially the effect of prodrugs of INH with gallic acid and syringic acid in restoring levels of enzymes superoxide dismutase and glutathione peroxidase and abrogating liver damage was noteworthy. The findings of this investigation demonstrated that reported prodrugs can add safety and efficacy to future clinical protocols of tuberculosis treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app